Tuesday, February 5, 2013

Robots In Car Manufacture

Robots in car manufacture

Robots were initially retained to perform precise welding chores and other repetitive tasks that humans had long found boring, monotonous and injurious. By using robots to weld, handle dangerous objects and place items, auto manufacturers were able to ensure a consistent product with a minimum of worker injury. Currently, 50 percent of all robots in use today are used in automobile manufacture.


To make a robot work, a computer program is installed on its controller computer. This provides a set of precise instructions--based on geometry and carefully timed--that tells the robot where to place things, how to rotate them, where to weld and how to perform all of its other functions. Robots do not think for themselves, and must rely on humans to provide instructions. Robots also can work in more extreme environments on their own, or they can work alongside humans, assisting them in their day-to-day jobs--such as moving or rotating a car so humans can work on parts of it that would normally be difficult to reach.

Almost all manufacturing robots are single arms with computer controls, and do not look like a typical science-fiction "robot." Different robots will have different appendages, depending upon their job(s). For instance, a robot that places windshields will have a vacuum-powered suction grip to handle the smooth glass, while a welding robot will have an arc welder to fuse two pieces of metal together.


Robotic arm




robotic arm is a type of mechanical arm, usually programmable, with similar functions to a human arm; the arm may be the sum total of the mechanism or may be part of a more complex robot. The links of such a manipulator are connected by joints allowing either rotational motion (such as in an articulated robot) or translational (linear) displacement. The links of the manipulator can be considered to form a kinematic chain. The terminus of the kinematic chain of the manipulator is called the end effector and it is analogous to the human hand.





Types


In car manufacturing they use different types of robot like:


  • Cartesian robot / Gantry robot: Used for pick and place work, application of sealant, assembly operations, handling machine tools and arc welding. It's a robot whose arm has three prismatic joints, whose axes are coincident with a Cartesian coordinator.
  • Cylindrical robot: Used for assembly operations, handling at machine tools, spot welding, and handling at diecasting machines. It's a robot whose axes form a cylindrical coordinate system.
  • Spherical robot / Polar robot (such as the Unimate): Used for handling at machine tools, spot welding, diecasting, fettling machines, gas welding and arc welding. It's a robot whose axes form a polar coordinate system.
  • SCARA robot: Used for pick and place work, application of sealant, assembly operations and handling machine tools. It's a robot which has two parallel rotary joints to provide compliance in a plane.
  • Articulated robot: Used for assembly operations, diecasting, fettling machines, gas welding, arc welding and spray painting. It's a robot whose arm has at least three rotary joints.
  • Parallel robot: One use is a mobile platform handling cockpit flight simulators. It's a robot whose arms have concurrent prismatic or rotary joints.
  • Anthropomorphic robot: Similar to the robotic hand Luke Skywalker receives at the end of The Empire Strikes Back. It is shaped in a way that resembles a human hand, i.e. with independent fingers and thumbs.


Additional information
In space the Space Shuttle Remote Manipulator System also known as Canadarm or SSRMS and its successor Canadarm2 are examples of multi degree of freedom robotic arms that have been used to perform a variety of tasks such as inspections of the Space Shuttle using a specially deployed boom with cameras and sensors attached at the end effector and satellite deployment and retrieval manoeuvres from the cargo bay of the Space Shuttle.






Reference

1-http://www.ehow.com/about_4678910_robots-car-manufacturing.html
2-http://en.wikipedia.org/wiki/Robotic_arm#Types
3-http://prime.jsc.nasa.gov/ROV/types.html



No comments:

Post a Comment